MonadRandom 0.5 released

I’m happy to announce the release of MonadRandom-0.5, a package which provides a convenient monadic interface for random number generation in the style of transformers and mtl: a Rand monad (essentially a state monad that threads through a generator), a monad transformer variant called RandT, and a RandomMonad class allowing the use of random generation operations in monad stacks containing RandT.

This release has quite a few small additions as well as a big module reorganization. However, thanks to module re-exports, most existing code using the library should continue to work with no changes; the major version bump reflects the large reorganization and my resultant inability to 100% guarantee that existing user code will not break. If your code does break, please let me know—I would be happy to help you fix it, or simply to know about it so I can help other users.

Here are a few of the biggest changes that may be of interest to users of the library:

  • A new MonadInterleave class (see #20), which is a big improvement over MonadSplit. It provides a method interleave :: m a -> m a, which works by splitting the generator, running its argument using one half of the generator, and using the other half as the final state of the resulting action (replacing whatever the final generator state otherwise would have been). This can be used, for example, to allow random computations to run in parallel, or to create lazy infinite structures of random values. In the example below, the infinite tree randTree cannot be evaluated lazily: even though it is cut off at two levels deep by hew 2, the random value in the right subtree still depends on generation of all the random values in the (infinite) left subtree, even though they are ultimately unneeded. Inserting a call to interleave, as in randTreeI, solves the problem: the generator splits at each Node, so random values in the left and right subtrees are generated independently.

    data Tree = Leaf | Node Int Tree Tree deriving Show
    
    hew :: Int -> Tree -> Tree
    hew 0 _    = Leaf
    hew _ Leaf = Leaf
    hew n (Node x l r) = Node x (hew (n-1) l) (hew (n-1) r)
    
    randTree :: Rand StdGen Tree
    randTree = Node <$> getRandom <*> randTree <*> randTree
    
    randTreeI :: Rand StdGen Tree
    randTreeI = interleave $ Node <$> getRandom <*> randTreeI <*> randTreeI
    
    >>> hew 2 <$> evalRandIO randTree
    Node 2168685089479838995 (Node (-1040559818952481847) Leaf Leaf) (Node ^CInterrupted.
    >>> hew 2 <$> evalRandIO randTreeI
    Node 8243316398511136358 (Node 4139784028141790719 Leaf Leaf) (Node 4473998613878251948 Leaf Leaf)
  • A new PrimMonad instance for RandT (thanks to Koz Ross), allowing it to be used in conjunction with e.g. mutable vectors.

  • New and improved random selection functions:
    • fromList now raises an error when the total weight of elements is zero.
    • The type of uniform is generalized to work over any Foldable.
    • New operations weighted, weightedMay, fromListMay, and uniformMay have been added. weighted is like fromList but generalized to work over any Foldable. The May variants, of course, return a Maybe result instead of raising an error.
  • New lazy vs strict variants of the Rand monad. If you import Control.Monad.Random or Control.Monad.Trans.Random you get the Lazy variant re-exported by default, but you can explicitly import .Lazy or .Strict if you want. They provide the exact same API, but Lazy is implemented with a lazy state monad and Strict with a strict one. To be honest it’s not clear what difference this might make, but since the distinction is already there with the underlying state monad for free, why not provide it?

Although there was some discussion of generalizing MonadRandom to work for a wider range of underlying generators (see the comments on my previous blog post and the discussion on issue #26), I decided to punt on that for now. It seems rather complicated, and that there are already good alternatives like the very nice random-fu package, so I decided to keep things simple for this release. I’m still open to proposals for generalizing future releases.

For a full rundown of changes in 0.5, see the change log. Comments, questions, and bug reports are always welcome either as a comment on this blog post or on the GitHub issue tracker.

Advertisements

About Brent

Assistant Professor of Computer Science at Hendrix College. Functional programmer, mathematician, teacher, pianist, follower of Jesus.
This entry was posted in haskell, projects and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s