Category Archives: species

Anafunctors

This is part four in a series of posts on avoiding the axiom of choice (part one, part two, part three). In my previous post, we considered the “Axiom of Protoequivalence”—that is, the statement that every fully faithful, essentially surjective … Continue reading

Posted in category theory, math, species | Tagged , , , , , , , , , , | Leave a comment

AC and equivalence of categories

This is part three in a series of posts on avoiding the axiom of choice (part one, part two). In my previous post, I explained one place where the axiom of choice often shows up in category theory, namely, when … Continue reading

Posted in category theory, math, species | Tagged , , , , , , , , , | 5 Comments

Unique isomorphism and generalized “the”

This is part two in a series of posts on avoiding the axiom of choice; you can read part one here. In category theory, one is typically interested in specifying objects only up to unique isomorphism. In fact, definitions which … Continue reading

Posted in category theory, math, species | Tagged , , , , , , , , | 8 Comments

Avoiding the axiom of choice, part I

I’m hard at work on my dissertation, and plan to get back to doing a bit of blogging based on stuff I’m writing and thinking about, as a way of forcing myself to explain things clearly and to potentially get … Continue reading

Posted in category theory, math, species | Tagged , , , , , | 17 Comments

Random binary trees with a size-limited critical Boltzmann sampler

Today I’d like to talk about generating random trees. First, some imports and such (this post is literate Haskell). > {-# LANGUAGE GeneralizedNewtypeDeriving #-} > > module BoltzmannTrees where > > import Control.Applicative > import Control.Arrow ((&&&)) > import Control.Lens … Continue reading

Posted in combinatorics, haskell, math, species | Tagged , , , , , | 7 Comments

The algebra of species: primitives

[This is the fifth in a series of posts about combinatorial species. Previous posts: And now, back to your regularly scheduled combinatorial species; Decomposing data structures; Combinatorial species definition, Species definition clarification and exercises.] Recall that a species is a … Continue reading

Posted in math, species | Tagged , , , , , , | 6 Comments

Species definition clarification and exercises

[This is the fourth in a series of posts about combinatorial species. Previous posts: And now, back to your regularly scheduled combinatorial species; Decomposing data structures; Combinatorial species definition.] In my previous post I neglected to mention something quite crucial, … Continue reading

Posted in math, species | Tagged , , , | 2 Comments

Combinatorial species definition

Continuing from my previous post, recall that the goal of species is to have a unified theory of containers with labeled1 locations. So, how do we actually specify such things (leaving aside for the moment the question of how we … Continue reading

Posted in math, species | Tagged , , , , | 5 Comments

Decomposing data structures

So, what are combinatorial species? As a very weak first approximation, you can think of them as a generalization of algebraic data types.1 That doesn’t really say much about what they are, but at least it does explain why programmers … Continue reading

Posted in math, species | Tagged , , , | 9 Comments